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CONTINUOUS OPERATORS

BY
CONSTANTIN P. NICULESCU

By using the Jordan decomposition for vector measures it is shown that the class of all
weakly compact operators defined on a space C(S) and the class of all locally absolutely
continuous operators are the same,

INTRODUCTION

The main result of this paper (see Theorem 2.5 below) establishes
the identity between the class of all weakly compact operators defined
on a space (C(8) and the class of all locally absolutely continuous opera-
tors (Definition 2.1 below) defined on the same space. Thus, the latter class
appears as a class of summing (Corollary 2.6) or order continuous opera-
tors (Remark 2.8.) We pressent also a characterization of Banach lattices
having order continuous topology (Corollary 2.9).

The crucial step in our proof is the establishment of the Jordan
decomposition for vector valued measures. See Lemma ¢ .: below. Sur-
prisingly though the classical Jordan’s result is elementary, the vector
case involves deep results in the measure theory, namely the Dunford-
Pettis theorems in [4].

For the convenience of the reader we summarized in section 1 of the

present paper some basic facts about the relation between measures and
operators.

1. REVIEW OF THE MEASURE THEORY

For a more detailed account of the content of the present section we
refer to [7] and [13].

For % a Boolean ring (see [9] ch. 2 exercise 11 or [13] Definition
1.1) and Y a sequentially complete locally convex Hausdorff space denote
by Mesy (%) the vector space of all additive measures m : ¥ — Y which
are locally bounded, i.e.

sup p(m (B)) <
BCA

Be¥

for each A € % and each continuous semi-norm p on Y.
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If Y is a locally convex vector lattice (i.e.thetopology of Y is genera-
ted by semi-norms p such that |#|<|y| implies p(x) < p(y)) then every
positive measure m : € — Y belongs to Mesy(%). Therefore, a Jordan
type theorem can be formulated only for locally bounded measures.

In the next the elements of Mesy(%) will be regarded as continuous
linear operators on the space of all totally ¥ — measurable functions. The
general case was treated in [13]. We consider here the case ¢ a ring of
subsets of an abstract set T, originally due to Dinculeanu [3]. For every
A € % denote by 4 4(%) the completion in the sup norm of the space of all
% — step (i.e. simple) real functions defined on 7' and vanishing outside 4.

Define :

M) = Hm M%)
=1

in the category of all locally convex Hausdorff spaces. There is defined a
natural algebraic isomorphism :

Doy :Mes;(fg) = 2(M(%),Y)

given by :
Pex(m) (xa) = m(4)

where y, denotes the characteristic function of A. Furthermore, if ¥
is a locally convex lattice this isomorphism preserves the order.

A useful improvement of this isomorphism was obtained by J. Hoff-
mann-Jegrgensen [7]:

1.1 THEOREM. Let € be a Boolean algebra. In order that the image
by Ogy of a measure m € Mesy (%) be a weakly compact operator it i8 neces-
sary and sufficient that m be a strongly additive measure, i.e. for every
sequence {A,}, of disjoint elements, the sequence {m(A4,)in converges to
0eY.

" For € a Boolean algebra the Banach space (%) is isometric to a
space C(S) where the compact Hausdorff space 8 is obtained by using the
Stone representation theorem for Boolean algebras. Thus, Theorem 1.1
above is an immediate consequence of the Kluvanek’s result concerning
the extension of vector measures and of the following result in [1] (see
also [6]):

1.2 THEOREM. Let 8 be a compact Hausdorff space and let B(8) be the
Borel o-ring associated to S. Then there exists a natural algebraic isomor-
phism between the vector space of all c-additive measures m : A(8)—Y and
the wvector space of all weakly compact operators U € £ (0(8), Y). Moreover,
m and U are related by :

v(f) = |1 am

for each f € C(8).
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The isomorphism {s,y above isrelated to the isomorphism ®2%(8),
as follows: for every oc-additive measure m: #(8) — Y, {sy(m) is the
restriction of ®%,(m) to C(8).

Form the result above it follows (see [6] that an operator
Ue2 (0(8), Y)is weakly compact if, and only if, U maps weakly Cauchy
sequences into convergent sequences or equivalently, if U** maps every
open F; — subset of § into an element of Y. In the next section we shall
present another characterization by using the notion of absolute continuity.
Our result is seen to be intimately related to the following in the measure
theory : Let m be a measure defined on a c-algebra J and taking values
in a Banach space X. Then m is c-additive if, and only if, there exists a
c-additive positive measure p:7 — [R, such that m be absolutely
continuous with respect to u. See [1] or the footnote on the page 146 in [6].

2. LOCALLY ABSOLUTELY CONTINUOUS OPERATORS ON C(s)

Let Z be a locally convex lattice, X a Banach space, T € ¥ (Z,X)
and #* e Z*, z* > 0. .

2.1. DEFINITION. T is said to be locally absolutely continuous with
respect to 2* (i. e. T<kz*) if for eachz € Z,z > 0 and each = > 0 there exists
8 = (2, €) > 0 such that :

ly] < 2, 2*(ly|)<d implies | Ty ||<e

An operator T e #(Z, X) is said to be locally absolutely continuous
if there exists 2* e Z*, 2* > 0 such that T < z*. Weshall denote by AC(Z,X)
the vector subspace of all locally absolutely continuous operators T €
e X(Z, X). ‘

The notion of locally absolutely continuous operator was introduced
in [13]in connection with the Bourbaki’s version for the Lebesgue-Nikodym
theorem.

For Z = 0(8), 8§ a compact Hausdorff space, each T e AC(Z, X)
maps weakly summable sequences into summable sequences, which implies
that T is weakly compact. The main result of this section asserts that
the converse is also true. We need several lemmas. The first one establi-
shes the Jordan decomposition for an important class of vector measures :

2.2. LEMMA . Let S, 8’ be two compact Hausdorff spaces and let T € &
(C(8), C(8")) a (weakly) compact operator. Then there are two (weakly) compact
positive operators Ty, T, € £ (C(8), O(8')**) such that T = T, — T,

If in addition 8’ is supposed to be a Stonean space then there exists
a positive projection P : O(8')** — ((8’) (use the Hahn-Banach theorem)
and thus we can choose T, T, € £(0(8), C(8")).

Proof. It suffices to prove that every (weakly) compact operator
8 € L(LY(u),LY(v))is order majorized by a (weakly) compact positive one
(use the natural duality between the AM and AL. Or this follows from
the Dunford-Pettis-Phillips theorem concerning the integral represen-
tation of the (weakly) compact operators defined on a space LYu) (see
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[5] Thms. 9. 4. 7 and 9.4.8) and from the fact that if A is a relatively
(weakly) compact subset of L'(v) then

A ={Ifl;feA}

is also relatively (weakly) compact. The case “weakly compact’’ follows
immediately form the Dunford-Pettis characterization for the weakly
compact subsets of a space L1(v). See [5] Theorem 4.21.2. The ‘‘case com- -
pact’ is elementary.

2 3. REMARK . The version “compact” was first established by
Krengel [10] by using a different (elementary) method which cannot
be adapted to the weakly compact case.

In the next section we shall obtain the Jordan decomposition in a
more general situation.

The following result can be deduced from [13] Théoréme 3.4. We
present here a direct proof.

" . 9.4. LEMMA . Let X be an ordered Banach space (i.e. 0<z<y implies
lzl<lyl) andlet T € £(C(8), X) a weakly compact positive operator. Then
T e AC(C(S), X).

Proof. Since T is weakly compact there exists a positive measure v,

on 8, such that:

fe%/(ga(s)),SIfl du = 0 implies T**(f) = 0

See [1] or the footnote on the page 146 in [6]. We shall show that T <p.
Suppose thatthe contrary is true. Then, there exist an £, >0 and a sequence

fan€ C(8) such that:

. 0<f.<1

iLV&p<"H
iii. [T(fa)ll >0
Consider the following elements of .//l (B(8)):
g, =sup {f, ; k>n}
g = inf {g. ; n>1}

As usfuéml we consider on .#(%(8)) the pointwise order. Since Sg dp=0

We have T**j = 0 and from the Beppo-Levi theorem in the measure
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theory it follows that {T** g,}, converges weakly to T**(g). Here we con-
sider T** with values in X. On the other hand, {T** g,}, is a decreasing
sequence of positive elements. Then, a well-known result due to Dini (see
[17] ch. V 4.3) asserts that {T#%*g,}, converges to 0 in the norm topology
of X, in contradiction to the fact that :

| T**g, 1= | T**full = o

q.e.d. ‘ ,
Tn order to formulate our main result we need a definition . Let Z
be a locally convex lattice and consider the vector space [A[Z] (respectively
1M(Z)) of all weakly summable (resp. summable) sequences of elements of
Z. See Pietsch [16] for details. We shall denote by [} [Z] the vector sub-

space of all {z,}, € [1[Z] such that for a suitable z > 0 we have :

Yl <z
ner

for every finite subset F of IN. ‘

9 5. THEOREM. For T € Z(0(8), X) the following statements are equi-
valent : "

(a) T is weakly compact .

(b) T is locally ebsolutely continuous

() T (BLO(S)]) C K(X)

Ome can show that {1 [C(S)] = £[C(8)] and in this form the equi-
valency (a) & (¢) was first remarked by Pelezynski [15].

Proof. (a) = (b). Let K be the unit ball of X* endowed with the
weak*-topology and denote by ix: X — C(K)** the canonical mapping.
Then ig- T is weakly compact and Lemma 2.2 above reduces our pro-
blem to the case of a weakly compact positive operator of Z(C(8), C(H)**).
It remains to apply Lemma 2.4 above, q.e.d. :

(a) =(c) follows easily from the Orlicz-Pettis theorem concerning
the unconditional weakly convergent sequences ’

(b) = (@) and (¢} = (@) follow from the fact that T** maps every
open F,-subset of § into an element of X. Apply Theorem 6 in [6].

2.6. COROLLARY. An operator T € $(Z, X) is locally absolulely con-
tinwous if, and only 1f, T satisfies the following two conditions :

(i) There exists 2* e Z*, z* >0, such that
ze M(Z), z >0, 2%(z)=0 implies T**(z) = 0
(@) T(L[ZYC X -

Here M(Z) denotes the monotone hull'of Z in Z**, i.e. if {zu}sis @
decreasing sequence of elements of M(Z), then its' o(Z**, Z*)—limit is so
in M(Z). For Z a space O(8) we can use M(B(8)) instead of M(Z) and
in this case (i) and (%) imply that T < z*. :
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Proof. The necessity is clear. The sufficiency. Let 2 € Z, 2 > 0. Con-
sider the following normed space :

Z,={yeZ;|y| < rzfor asuitable A > 0 } normed by :
lyl, =inf {A>0; |y| < 22}

Then Z, is isometric and order isomorphic to a space C(8) for 8 a suitable
compact Hausdorff space. Denote by 4, : Z, — Z the canonical inclusion.
By virtue of (i7) it follows (see ¢= a in Theorem 2.5 above) that T,
is weakly compact. As in the proof of Lemma 2.4 we can conclude (see
Remark 2.10 bellow) that T,i, << 2%z > 0.

2.7 REMARK. Let T €% (Z, X) such that T**(M(Z)) be separable.
Then T' satisfies (i) for a suitable z* e Z***, 2% > (. See [13] Lemma 4.4
for the proof.

2.8 REMARK. The condition 2.6 (ii) above is equivalent to each of
the following assertions :

(¢4)" T maps every order interval into a conditionally weakly compact
subset of X. '

(1) If {#,}, Is a decreasing sequence of positive elements of Z , then
{Tz,}, is a convergent sequence.

The proof is an immediate consequence of the 1emarks following
theorem 1.2 above. Use the spaces Z,.

Particularly from the result above we can deduce the following cha-
racterization of Banach lattices having order continuous topology :

2.9. CoROLLARY. For Z an order o-complete Banach lattice the fol-
lowing statements are equivalent :

(1) 2,40 (in order) implies ||z, || — 0

(2) Each order interval of Z is relatively weakly compact

(3) L (2] C 1}2Z)

(4) For every compact H ausdorff space S we have :

T eZ(C(8), Z), T > 0implies T = weakly compact

See also [14].

2.10. REMARK. If X is an ordered Banach space and U, V e
€ Z(0(8), X) we have :

O0< U<V, V=uwekly compact implies U — weakly compact
This follows from Theorem 2.5.

Particularly if 8 and 8’ are two compact Husdorff spaces, 8’ being
supposed in addition Stonean, then the weakly compact operators
T e 2(0(8), C(8')) constitute a lattice.

3. JORDAN DECOMPOSITION FOR VECTOR MEASURES

An important result in the measure theory asserts that every s-ad-
ditive measure defined on a Boolean c-algebra is the difference of two
c-additive positive measures. In literature this result is known as Jordan
decomposition theorem. In the next we shall consider ¢-additive meas-
ures taking values in a Banach lattice Z. In order that the Jordan decom-
position hold for every such measures, several restrictions must be imposed
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on Z, e.g. by considering the s-additive measures on #(IN), the c-algebra
of all subsets of [N, the following condition is necessary :

(al) {entn € (Z) = {|2a]}n € (2)

In fact, every element of ({(Z) can be interpreted as a c-additive
measure m: Z(IN) — Z.

It was proved by D.I. Cartwright and H. P. Lotz (Some characteri-
zations of AM and AL spaces, to appear) that aM implies Z is lattice
isomorphic to an AM space in the sense of Kakutani. However, not every
measure having as range an AM space is decomposable.

3.1. PrROPOSITION. For € a Boolean algebra and m € Mes,, (%) the
following assertions are equivalent :

i) ®@¢.., (m) is a compact operator

ii) There are two positive measures m,, m, € Mes, (%) such that
m=m;—my

Proof. i) = ii). If ®4..,(m) is a compact operator then the result of
Krengel in [10] (see also A. Peressini : Ordered topological vector spaces,
page 179) implies the existence of two compact positive operators U, Ve
€ L(M(¥€), e,) such that Og,. (m) = U — V. Then ii) is satisfied for :

m, = D¢, (U)
and
my = (I)¢Tct (V)

ii) = i). If m € Mes., (%) is a positive measure then @, (m) is a po si-
tive operator which maps the unit ball of .#(%) into an order interval of
eo. Or (%) is lattice isometric to a C(S) space and each order interval of
e, is relatively compact, q.e.d.

Particularly the above result implies that the vector measure m(4)=

] {S cos nit dt} from the Borel subsets of [0, 2n] with values in ¢, is
4 n

not decomposable as a measure having values in ¢,. However, there exists
a decomposition in Mes,« (¥) given by :

ms (A>={S

A

(cos nt)*dt}

n

m_ (4) = {S (cos nt)“dt}
4

n

In the next we shall study a slightly different notion of decomposa-
bility. Our results are in connection with Theorem 3.8 in [13].
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For X an arbitrary Banach space we shall denote by 8, (X*) the unit
ball of X* endowed with the weak*-topology. A closed subset K(C8,(X*)
is called an essential subset if :

lz|| =sup | < @ 2*>|
«*eK

for each z € X. For X = C(S) we can identify § as an essential subset.
~ Fixan essential subset K of S;(X*). There is defined a natural map-
ping :

ig: X — C(K)**

which is an isometry. The following result is an esy improvement of
Lemma 2.2 above.

3.2. PRoOPOSITION. Let T € &£ (C(8), X) a weakly compact operator
Then ixe T is the difference of two weakly compact positive operators belonging
to & (C(8), C(K)**). , .

Particularly for X = [R we can choose K = {1} and in this case
C(K) =2 [R. Therefore, every real Radon measure is the difference of two
positive Radon measures. This result is equivalent to the classical Jor-
dan’s result.

From 1.1 and 3.2 it follows immediately :

3.3. PrRoPoSITION. Let X, K, ix be as above and let T be a Boolean
algebra. If m : T — X is a strongly additive measure then igom = m; — my
for my, m, : I — C(K)** two strongly additive positive measures.

By virtue of Remark 2.10 above, this result remains true for locally
strongly additive measures defined on Boolean rings. In the next we are
interested to formulate a Jordan theorem for oc-additive measures. Our
result is in connection with the existence of the control measures.

Let & be a Boolean 3-ring, X a Banach space and u: ¥—>R, a
c-aditive positive measure. Denote by Mesy (¥, w) the vector subspace
of all m € Mesy (&) such that m is locally absolutely continuous with res-
pect to u, i.e. m < p. (see [13] Definition 1.9). Analogously for Z a locally
convex lattice and 2* € Z*, 2* > 0 denote by AC.+«(Z, X) the vector sub-
space of all T € & (Z, X) such that T < 2*.

The following result motivates the use of the term of local absolute
continuity in 2.1 above: :

3.4. THEOREM. The isomorphism ®g x induces naturally the fol-
lowing algebraic isomorphism :

Mesy (¥, w) —> ACo, puw (H(F), X)

Proof. It is no harm to assume that & is a Boolean c-algebra. If
we denote by 8 the spectrum of &, then & is isomorphic to the Boolean
algebra &’ of all clopen subsets of S and #(¥) is equivalent (as Banach
lattice) to O(8). Let m € Mesg (&, u). Considered as measures defined on
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&', m and u are both strongly additive and c-additive and, thus (see [18]),
they have a unique cs-additive extension to the c-algebra generated by &’.
If we denote these extensions by m’ and, respectively, p’ then m’' < p’
and our result is a consequence of Corollary 2.6 above

3.5. THEOREM. Let 8 be a compact space, let . be a positive Radon
measure on S and let T € & (C(8), X) such that T<<p. Then |ix-T|<Lp.

Proof. Since C(K)** is lattice isometric to a space C(H) for H a
compact Stonean space then there exists the modulus of ix-T in Z (C(8},
C(K)**). See A. Peressini : Ordered topological vector spaces, page 22.

By combining Theorem 2.5, Lemma 2.2. and Remark 2.10 above
we obtain that |ix-T | is weakly compact.

Let fe .# (& (8)), f = 0, such that Sf dp = 0. Since T < n wehave

0<g<f ge#(AS)) implies T**(g) = 0

On the other hand :

lige T 1**(f) = sup { | ix-T (9) 15 191 <f, g € 4(#(8))} and thus | ige T'|**
(f) = 0. Therefore, we can continue as in the proof of Lemma 2.4 above.

3.6 COROLLARY. Let I be a c-algebra and let m : T —X a c-additive
measure. Then, igom=m; — m, for my, my,: 7 — C(K)** two oc-additive
positive measures. )

Hint. It was remarked in [1] that there exists a c-additive positive
w: J— R. such that m< p.
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